Acoustofluidic control of bubble size in microfluidic flow-focusing configuration.
نویسندگان
چکیده
This paper reports a method to control the bubble size generated in a microfluidic flow-focusing configuration. With an ultrasonic transducer, we induce acoustic streaming using a forward moving, oscillating gas-liquid interface. The induced streaming substantially affects the formation process of gas bubbles. The oscillating interface acts as a pump that increases the gas flow rate significantly and forms a larger bubble. This method is applicable to a wide range of gas pressure from 30 to 90 kPa and flow rate from 380 to 2700 μL h(-1). The bubble size can be tuned repeatedly with the response time on the order of seconds. We believe that this method will enhance the capability of a microfluidic bubble generator to produce a tunable bubble size.
منابع مشابه
Numerical Study of Droplet Generation Process in a Microfluidic Flow Focusing
Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...
متن کاملCircuit model for microfluidic bubble generation under controlled pressure
We explore the microfluidic generation of bubbles in a flow-focusing junction using a pressure-controlled device rather than the more common flow ratecontrolled devices. This device is a prototype for extending microfluidic drop generation methods to molten polymers. We show that the bubble generation process is highly sensitive to pressure: small changes in pressure induce large changes in bub...
متن کاملA high rate flow-focusing foam generator
We use a rigid axisymetric microfluidic flow focusing device to produce monodisperse bubbles, dispersed in a surfactant solution. The gas volume fraction of the dispersion collected out of this device can be as large as 90%, demonstrating that foam with solid-like viscoelastic properties can be produced in this way. The polydispersity of the bubbles is so low that we observe crystallization of ...
متن کاملScale-up and control of droplet production in coupled microfluidic flow-focusing geometries
A single microfluidic chip consisting of six microfluidic flow-focusing devices operating in parallel was developed to investigate the feasibility of scaling microfluidic droplet generation up to production rates of hundreds of milliliters per hour. The design utilizes a single inlet channel for both the dispersed aqueous phase and the continuous oil phase from which the fluids were distributed...
متن کاملMicrofluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping.
We experimentally study the production of micrometer-sized droplets using microfluidic technology and a flow-focusing geometry. Two distinct methods of flow control are compared: (i) control of the flow rates of the two phases and (ii) control of the inlet pressures of the two phases. In each type of experiment, the drop size l, velocity U and production frequency f are measured and compared as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 15 4 شماره
صفحات -
تاریخ انتشار 2015